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The framework of the Murnaghan model of a nonlinearly elastic body is used 
to investigate the problem of stability of a closed sphere acted upon by hydro- 
static pressure, The theory of small deformations of an elastic body super - 
imposed on a finite deformation isused [l ] . The initial stress-strain state of equi- 

librium of the sphere is assumed to be centrally symmetric, and the neigh - 
boring state of equilibrium to be axisymmetric . 

The conditions of bifurcation of equilibrium lead to an eigenvalue pro- 
blem with a nonlinear entry of the parameter. A solution of this problem is 
obtained by numerical methods for spheres of varying thickness, with various 
constants appearing in the equation of state taken into account, Several vari- 
ants of the equations of neutral equilibrium are compared, depending on the 
accuracy of solution of the initial problem. All this makes possible the in - 
vestigation of the influence of the physical and geometrical nonlinearity on 

the value of the critical pressure to be carried out. 

1. Let us consider three equilibrium states of an elastic body. The initial state in 
the volume U, the first deformed state caused by the initial load ( v is the volume and 

0 denotes the surface), and the second stress-strain state ( v * denotes the volume 
and 0 * the surface) associated with the first state. We also have 

R* = R(r) + qw (r) 

where r, R and R* are the radius vectors of a point of the medium in V , Vand T/ * 
respectively ; ?I is a small parameter signifying the smallness of the additional dis - 

placement 11 w (in what follows, we shall neglect the terms containing q2 ). We shall 
further assume that mass forces are absent. In this case the equations of equilibrium for 
the additional deformations within the volume and on the surface, can be written in the 

form [ 2 ] 

v’.@ = 0, N.@ = f, V’ = VR-‘.V (1.1) 

f&+(T*-T)+dT-V’w’.T 

(f denotes the additional surface force ). 
Here p’ is the del-operator in the metric of the volume v connected with the del- 

operator V (referred to the undeformed state ), N is the normal vector, 2” and T * 
are the Cauchy stress tensors in the volumes F and v * , and 6 is the first invariant 

of the linear tensor of additional deformation. 
The equation of state for the Murnaghan material is given in the Finger form by 
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T= +{[-66h-4p+9~+n+(2L661+2m-n)I, + (1.2) 

zrra - 2m121M + (4~ - 6m + n + 2mll) M2 + n13E} 

(I? is the unit tensor). 
Here M = VRT.VR is the Finger measure of deformation, II, I2 and 1, are 

its principal invariants ; A, p, I, m and n.are the moduli of elasticity. The relation 

(1.2 ) can be obtained using the expression for the specific potential energy of deform- 
ation in the Mumaghan form, and relations connecting the invariants of the measure with 
the invariants of the finite deformation tensor [ 2 1. Using the relations (1.1) and (1.2 ) 
we obtain 

-6L44y+91+n+ 21-66I+2m-- II+ 
4 4 (1.3) 

+I13 -+[2]~RT.~~+[2i.-6z-~2m-n M+ 

(I - m) I,N +m M2] VRT. . Gw + mVRT . CR. ORT . . VWM + 

4p-;m+n +$ll)(M.VRT.Vw+M.VwT.CR+ -0 

VR=. Gw -hl) + + I3 (2VwT. . T’R-*E - VWT. &)} 

2. We introduce the spherical coordinates T, cp and h and consider a centrally 
symmetric deformation of a hollow sphere the outer surface of which is acted upon by a 
uniformly distributed ” follow-up” pressure p (the inner surface is load - free ) , Then 

the first deformed state can be described by the following equations : 

R = ir + u @)I e, 

VR = CRT = M”’ = ae,e, + b (ecpecp + eke&) 

a=l+$, b=l+-+, f= - P@N + N .T”wT) 

(2.1) 

Here U (r) is the radial displacement, f is the additional surface force vector and e,., 
ecp and eh are the basis vectors coinciding with the unit vectors of the spherical co- 

ordinate system. 
The second equation of (2.1) yields the principal invariants of the deformation measure 

II = a2 + 2b2, Iz = 2a2b2 + b4, I, = a2b4 (2.2) 

The adjacent forms of equilibrium situated close to the first stress-strain state are 

assumed to be axisymmetric , i. e. 

w = C (r, cp)G + w (r, cp)e, 

Using the second equation of (‘2.1) , (2.2 ) and (1.3 ) , we can reduce the expression for the 
tensor 8 to the form 

@= A,v+Az~+A,~+A4~CLBIP)e,e,t- 
( 1 

(2.3 ) 
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+ (Blv+B2g + B3 g + B4w ctg cp ) (ecpecp -A%)+ 

( C1W+CZgfC3g )e,e,+(D,w+DP$+08~)eiC0 

The coefficients accompanying the unknowns are determined by the formulas 

r& = + [h + 1 (a2 + 2b2 - 3) + m (1 - b2) + + (b2 - I)] 

& l2h (3u2 + 2b2 - 3) + 4y (3a2 - 1) + I (5u4 + 4b” + 
(2.4) 

A2 = 

12u2b2 - 18a2 - 12) + 2m (5u4 + b4 - 6a2) + n (b4 _ 2b2 + I)] 

rB, = &[2h(u2+6b’-3)+4p(3b2-I)+Z(u4+20b4+ 

g2u2b2 - 6u2 - 36b2 + 9) + 2m (5b4 - 3$b2 - 3b2 + u2) + 
n (1 - a2 - 3b2 + 3u2b2)] 

B2 = l/2 [h + 1 (a” i- 2b2 - 3) + (m - n) (1 - b?)] 

tB, = & [2h (4b2 + u2-3)+4p(3b2--l)+Z(9-6$-24b2+ 

8u2b” + 12b4 $ u4) + 2m (a2 - u2b” - 56” + jb4) + 
n (1 - a2 - b3 + u2b2)] 

rDl = - rD, = -&- [- 4p _t 2m (3 - u2 - 262) + n (b2 _ I)] 

Dz = & [2h (a2 + 2b” - 3) + 4~ (a2 + b2 - 1) + 1 (a4 + 4b’ + 

4a2b2 - 6a2 - 12b2 + 9) + 2m (u4 + b4 + u”b” - 2~2 - b2) + 

n (1 - b2)], A3 = A4 = llrA1, B4 = B1 - B3 

Cl=-Cca=-;D2, C2=-+rD1 

Substituting the expressions (2.3 ) into the first condition of equilibrium (1. 11, we 
arrive at the following system of two differential equations : 

;[Al~+A2~++(~+ wctgcp -?- iI 
i L + Alu+A+++ s+ 

t 
w &)] - $[2B,u + 

.‘B,g+B,(g+ )] wctgyr ++-& c,llI+c2+ 
I 
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and we seek the solution of this system in the form 

v = xk tr) pk @OS @, w = yk @) 
dPk (~0s cp) (2.5) 

where Pk (cos cp) is the FE -th order Legendre polynomial. On substituting (2.5) we 
see that the variables separate. As a result, we obtain a system of ordinary differential 
equations with variable coefficients (a prime denotes the derivative with respect to the 
radial coordinate ) 

1 
7 

{L i 
AI Xk + v Yk) +AzX;]+ 4+?,(Xk + 

(2.6 1 

v Y”.) + 2&Xk’- (k2+k) cl (Xk+ Yk) - (k2+k) &Y,‘] = 0 

f {t& (xk + Yk) + D2Yk'l r’}’ + + [(Cl+ 2B3 - B,) (X,-l- Yk)+ 

c2y; - 2&j ! XI, -,- FY,) -B?X,‘] =o 

The second condition of equilibrium given in (1.1) on the outer (r = po) and inner 

(r = rI) boundary of the sphere yields the following four relations : 

&+$- + f txk + yk,] -!- 

A2 - +) xh_’ = (1 

rD1 [ Yk’ -l- f (Xk -i- Yk)] + (D2 - rD1) Y,’ = 0 (r = r,) 

From the formulas (2.4) for the coefficients Al, AZ, . . ., cl, cz it is clear 
that the load P enters the equations of neutral equilibrium through the functions a and 

b. The homogeneous system of Eqs .(2.6 ) with boundary conditions (2.7 ) has a trivial 
solution w = 0. However, at certain values of p called the bifurcation values, non- 

trivial solutions corresponding to the perturbed equilibrium forms of the volume V+ 

also become possible. The critical pressure is found as the smallest bifurcation value 
of p determined by the appropriate choice of the number of nodes 1; of the bifurcation 
form, We note that the eigenvalue problem (2.6), (2.7 ) of determining the bifurcation 
load is nonlinear, since the parameter P to be determined enters the expression in a 
nonlinear manner (the operator determined by the system and the boundary conditions 

is however linear ) . 

3. The problem of initial deformation of the sphere reduces, in the case of the 
Mumaghan material, to the following nonlinear boundary value problem [ 2 ] : 

(5, ‘+ T (a, - CrJ = 0 

or (r0) = - p, or (rl) = 0, 

(3.1) 
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The stresses are determined by the equations 

U, = -& [- 6h - 4~ + 9Z+ n +- (?A -+- 4~ - 6.~ - 4m) as + 

(43L - 131+ 4m - 2n) b”+ (I + 2m) ai -+ 4la2b2 + (41_2m+n)b41 

n --- or -0‘cp = f& 
( 

h:) [-- 6h--4~ -t 91+ n+ (2h + 4p-61-4m) x 

(a2 + 2b2) + (I + 2m) a* + (4Z+ 4m) a2b2 + (4Z+ 6m) b4 + 

(6m - 4p - n) 6” - 2m (a2b2 + 2b4)] 

An attempt to solve the boundary value problem (3,1) analytically was without 
success. The displacements u (r) (and therefore the functions a and b) were obtained 

in approximate manner. The values obtained were then used to determine the coeffi - 
cients of the problem (2.6), (2.7 ) and for this reason the equations of neutral equi - 
lib&m differ somewhat from the exact equations, the difference depending on the ac- 
curacy of solution of the initial problem (3.1) . Study of the influence of the error present 
in the solution of the initial problem on the value of the critical pressure is of interest. 

Three variants of the equations of neutral equilibrium were investigated .In the first 
case the boundary value problem (3,1) was linearized and the initial displacement had the 

form 
(3.2) 

In the second case the boundary value problem (3.1) was solved with the second order 
of smallness terms taken into account [ 2 1. The following, more accurate expression was 

obtained for the displacements within the framework of the second order theory : 

u=4+ar+$$-+v-$ 

where the constants a, p can be obtained from the system of linear algebraic equa- 

tions the first of which is 

(3~+2~)~+p== 3A~~op -(jh+m--+o(r,)+ 

( 
A,--Z+m-+) 61 (rl) - (2h - 2p + 2m - n) 6x (rl) ul’ (rl) - 

(5P + n) 1~1’ (rd12 
and thesecond one is obtained by replacing r1 and ro. The following notation is used here : 

T ‘L 

61== y7;J’Ul, @ = E. . 

> 

UI = ~10”) e,., 
(h + 3p -+ 2m) pQo8 

’ = (h -i 2p)(r18 - ro1)2 (3 Z i_ 2p)” 

In the third case the initial problem (3. 1) is integrated using the finite difference method. 
The equidistant nodes were used and the derivatives were approximated with the 

central second order differences. The resulting system of nonlinear algebraic equations 

was solved using the generalized Steffensen [ 3 ] method, and the choice of the initial 
approximation was based on the solution of the linear problem with the initial displace- 
ment (3.2). The interval (rl, rO) was divided into 30 to 100 subintervals depending on 
the thickness of the sphere. All approximate calculations were repeated twice to ensure 
accuracy. 
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The eigenvalues of the homogeneous problem (2.6 ), (2.7 ) were obtained by nu - 

me&al methods. The method of discretization wasused to solve the nonlinear eigenvalue 
problems, and itsuse can be justified with thehelp of the convergence theorem given in [ 4 1. 

The system (2.6 ) can be written in normal form, which is better suited for the subse- 
quent computations, by passing to new variables and introducing the functions 3rj according 
to the relations 

Then the general solution of the system can be written in the form 

y (r; p) = i Ciyi (r; p) 
i=l 

where Ci are arbitrary constants and (yi) denotes the totality of linearly independent 
solutions. After computing the coefficients of the system (formulas for a and b in (2.1) 
and formulas (2.4 )) , the values of the vector functions Yi (r; P) at the right end of the 
interval (rr,r~) were determined by integrating the system by the Kutta - Merson me- 
thod using the following initial vectors : 

YI (Q; P) = (0, k + 1, 0, &&I 

ya (rl; P) = {‘A -k, 0, A&) 

ys (rl; p) = t--k, -k2 - k, 1, k - 1) 

y, (rl; p) = {k + 1, -k2 + 3k - 2, 1, -k - 2) 

The above initial conditions were chosen in accordance with the general solution of a 
homogeneous system, similar to (2.6 ) and appearing in the problem of bifurcation of 

equilibrium of a sphere made of semi-linear material [ 5 1. Substitution of the general 

solution (3.3 ) into the boundary conditions (2.7 ) yields a homogeneous linear system 

of algebraic equations in Ci, i = 1,2,3,4. The determinant A (p) of this system va - 

nishes at the bifurcation values of P, and the sign of the determinant changes on the 

passage through the bifurcation value. Because of this, the critical load was determined 

by division into halves, The numerical process of constructing the equation A (p) = 0 

and of its solution was repeated for several values of k within a sufficiently large range, 
and the smallest bifurcation value of pcorresponding to the critical load was chosen. 

4. The algorithm for the determination of critical pressures was realized on a di- 
gital computer. The results were obtained with the help of the following dimensionless 
quantities : relative thickness e of the sphere and the critical value of the load parameter 

p* (E is theYoung’s modulus) 

Table 1 gives the values of the critical parameter p* and of the corresponding num- 
ber k of nodes of the equilibrium bifurcation form of the sphere for various E , for the mat- 

erials the elastic properties of which are defined by the constants [ 6 ] 1 = -7.1012 dyn 
1 cma ;m=o, n= -8.2 .1012 dyn / cm2. The following values were adopted for 

the Poisson’s ratio and Young ‘s modulus : v = 0.272, E = 2. IOladyn I cm2> and the 

following sets of constants I, m and n correspond to the variants 1) - 4) : 1) I = 
m=n=O, 2) Z=-7.1012dyn/Cm2, m=n=O; 3) I= _7.101adyn/ 
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cm~,~ = o,n = -_8.2.j012 dyn/cma; 4)~ = rn = 0,n = -8.2 *1012 dYn/an2. 
Table 1 

E.~(~~ / 1.41 j 12.2 ] 100 1 333 1/ r.W 1 1.41 / 12.~ j 100 1 333 

k 48 1 16 1 5 1 3 /I A’ ) 48 1 Ih 1 5 1 3 

1.200 1.193 1.12 0.753 I.193 1.150 , 0.81 0.580 
1) 1.20@ 1.192 1.11 0.758 3) 1.199 1.190 1.08 - 

1.199 1.192 1.11 0.770 1.197 1.190 1.11 - 

1.192 1.159 0.89 0.550 1.196 1.123 0.98 - 
2) 1.200 1.209 J.16 - 4) 

I 
1.198 1.378 1 .U7 .- 

l1.196 1.199 1.19 0.740 ’ 1.197 1.190 I 1.03 - 

The uppermost value in each partition of Table 1 denotes the critical value of the load 
parameter P* obtained from the relations (2.6 ), (2. I ) in which the initial displacement 
is taken according to the linear theory ; the middle value denotes p* corresponding to the 

equations written within the framework of the second order theory of elasticity, and the lower 

value denotes P+ corresponding to a more accurate computation of the initialstress-strain 

state of the sphere obtained using the finite difference method. A dash denotes the absence of 
the critical parameter in the corresponding interval. The variants 1) and 3 ) with a nonzero 

constant m equal [ 61 to -8. 1012 dyn / cm2 were also considered, In both cases 
the values of the dimensionless critical load parameter exceeded 1.2 appreciably, irrespe- 
tive of the sphere thickness and the accuracy of the equations of neutral equilibrium. 

Analysis of thenumerical results leads to the following conclusions concerning the in- 
fluence of nonlinearity on the magnitude of the upper critical pressure. 

1’. In the case of thin-walled spheres the critical load p obtained from the “thick” 

linearized equations differs very little from the values obtained using more accurate 
theories whether or not the constants 2 and n were taken into account. The results di- 
verge with increasing thickness of the sphere wall. 

2 ‘, The values of the dimensionless critical parameter pa decrease with increasing 

relative thickness 8. 

3’. The elastic Murnaghan constants with the exception of m have no significant 

influence on the magnitude of the upper critical pressure. 

The author thanks L. M. Zubov for the interest shown. 
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